martes, 19 de noviembre de 2013

Trabajando con ecuaciones de segundo grado

Cualquier ecuación de segundo grado puede, mediante transformaciones, expresarse en la forma ax2 + bx + c = 0,  donde  a,  y  b  son los coeficientes de los términos  x2  y  x, respectivamente y  c es el término independiente.

Ecuación de segundo grado completa 

Una ecuación de segundo grado es completa cuando los tres coeficientes  a,  b,  y  c  son distintos de cero. Entonces, la expresión de una ecuación de segundo grado completa es:

                                                 ax2 + bx + c = 0.
Ecuación de segundo grado incompleta
Una ecuación de segundo grado es incompleta cuando los términos  b  o  c,  o ambos, son cero.
(Si a = 0, la ecuación resultante sería  bx + c = 0,  que no es una ecuación de segundo grado.)
La expresión de una ecuación de segundo grado incompleta es:
ax2 = 0;   si    b = 0    y    c = 0.
ax2 + bx = 0;    si    c = 0.
ax2 + c = 0;    si    b = 0.
Algunos ejemplos, con soluciones
1) Resolver: − 5x2 + 13x + 6 = 0
Se identifican las letras, cuidando que la ecuación esté ordenada respecto a la x, de grado mayor a menor. Con esta condición tenemos: a = − 5;  b = 13;  c = 6.

Se aplica la fórmula:
Ecuacion_Seg_Grado009
Como la raíz buscada es 17 (el cuadrado de 17 es 289), se tiene entonces que:
Ecuacion_Seg_Grado010
Según esto, tendremos dos raíces diferentes, una usando el signo + y otra usando el signo −.

Llamaremos X1 y X2  a las dos soluciones, que serán:
Ecuacion_seg_grado011

Ecuacion_Seg_grado012
Ambos valores de x satisfacen la ecuación, es decir, al sustituirlos en ella producen una identidad. Al procedimiento de sustituir para probar si los valores hallados satisfacen la ecuación se le denomina verficación.
Probando con x = 3. Resulta: −5 • (3)2 + 13 • (3) + 6 = −45 + 39 + 6 = 0, tal como se esperaba en el segundo miembro.
Probando con Ecuacion_Seg_grado013,  se tiene
Ecuacion_Seg_Grado014

Como ambas respuestas producen identidades, ahora es seguro que 3 y Ecuacion_Seg_Grado015 son las raíces de − 5x2 + 13x + 6 = 0
2.- Resolver: 6x − x2 = 9
Hacemos los cambios necesarios para que la ecuación tenga la forma conocida. Trasponiendo y cambiando de lugar resulta:
− x2 + 6x − 9 = 0. Ahora se identifican las letras:
a = −1 ;  b = 6 ;  c = −9 ; y se aplica la fórmula:
Ecuacion_Seg_Grado016
El discriminante (Δ)  es igual a cero, por lo cual se producen dos raíces iguales a 3, es decir, x1 = x2 = 3.
Sustituyendo los valores en la ecuación original, se verifica que: 6•3 − 32 = 18 − 9 = 9 con lo cual se ha comprobado la respuesta.

No hay comentarios:

Publicar un comentario